[자료구조] 12.고급정렬
12장 고급 정렬
출처: https://gaussian37.github.io/ml-sklearn-saving-model/
sklearn을 이용하여 model을 학습한 후 학습한 결과를 저장하는 방법에 대하여 알아보겠습니다.
pickle 형태로 모델을 저장할 것이고 저장할 때에는 sklearn의 joblib을 사용할 것입니다. pickle은 파이썬에서 지원하는 serializer 형태의 저장 방식입니다. 참고로 JSON 같은 경우는 언어에 상관없이 범용적으로 사용할 수 있는 seriazlier 형태이지만 pickle은 파이썬에서만 사용가능 하되 지원되는 데이터 타입이 JSON 보다 많이 있습니다.
from sklearn.linear_model import LogisticRegression
from sklearn import datasets
import pickle
from sklearn.externals import joblib
# Load the iris data
iris = datasets.load_iris()
# Create a matrix, X, of features and a vector, y.
X, y = iris.data, iris.target
clf = LogisticRegression(random_state=0)
clf.fit(X, y)
saved_model = pickle.dumps(clf)
# Load the pickled model
clf_from_pickle = pickle.loads(saved_model)
# Use the loaded pickled model to make predictions
clf_from_pickle.predict(X)
>> array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1,
1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])
joblib.dump(clf, 'filename.pkl')
>>
['filename.pkl',
'filename.pkl_01.npy',
'filename.pkl_02.npy',
'filename.pkl_03.npy',
'filename.pkl_04.npy']
clf_from_joblib = joblib.load('filename.pkl')
clf_from_joblib.predict(X)
>>> array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1,
1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])
12장 고급 정렬
Dijkstra 최단 경로 알고리즘
8장 트리
Abstract
선택 정렬 알고리즘
연결된 구조
큐에 대한 정의
스택의 개념과 동작 원리
1. 리스트 & 집합 & 배열
1. 파이썬 이란?
1. 교과서 정리
1. 자료구조와 알고리즘
논문 정리 논문 요약
[우분투] 파이썬 가상환경 만들고 사용하기
[우분투] 파이썬 가상환경 만들고 사용하기 - venv 사용하여 가상환경 생성
1. 개념
활동내용
활동내용
활동내용
- hhttps://dacon.io/competitions/official/236050/overview/description
활동내용
외국계 기업의 정확한 뜻
활동내용
1. 다항함수(Polynomial Function)
활동내용
출처: https://gaussian37.github.io/ml-sklearn-saving-model/
1. 경사도벡터(Gradient Vector)
[참고] - https://blog.est.ai/2020/03/%EB%94%A5%EB%9F%AC%EB%8B%9D-%EB%AA%A8%EB%8D%B8-%EC%95%95%EC%B6%95-%EB%B0%A9%EB%B2%95%EB%A1%A0%EA%B3%BC-bert-%EC%95%95%E...
- https://aihub.or.kr/aihubdata/data/view.do?currMenu=115&topMenu=100&aihubDataSe=realm&dataSetSn=631
머신러닝 스터디 팀4 활동 보고서
1. 영유아 행동인식을 통한 발달평가 XXX - https://aihub.or.kr/aihubdata/data/view.do?currMenu=115&topMenu=100&aihubDataSe=realm&dataSetSn=631
https://www.itworld.co.kr/insight/109825 [ITWorld - 머신러닝 라이브러리, 텐서플로우의 이해] https://tensorflow.blog/%EC%BC%80%EB%9D%BC%EC%8A%A4-%EB%94%A5%EB%9F%AC%EB%8B...
http://matrix.skku.ac.kr/math4ai-intro/W13/
랜덤(random) 모듈
1팀. 주식시세 차익 알림
차원축소와 매니폴드 학습
인공지능 기초 2022-2 Project Proposer
추천 알고리즘의 기본 협업 필터링(Collaborative Filtering) • Memory Based Approach User-based Filtering I...
자소서 지원동기 효과적인 작성법
분명히 로컬에서 삭제한 파일인데 원격에 반영되지 않는 경우가 있다. git status로 했을 때 삭제 됐다고 뜨는데 add를 해도 안먹고 commit을 해도 반영이 안되는 것이다…
1. 결정 트리
[공통] 마크다운 markdown 작성법
Git 설치 & 환경설정
첫 블로그 생성입니다. 앞으로 잘 부탁드려요.