사이킷런(scikit-learn)으로 학습한 모델 저장하기

출처: https://gaussian37.github.io/ml-sklearn-saving-model/


sklearn을 이용하여 model을 학습한 후 학습한 결과를 저장하는 방법에 대하여 알아보겠습니다.

pickle 형태로 모델을 저장할 것이고 저장할 때에는 sklearn의 joblib을 사용할 것입니다. pickle은 파이썬에서 지원하는 serializer 형태의 저장 방식입니다. 참고로 JSON 같은 경우는 언어에 상관없이 범용적으로 사용할 수 있는 seriazlier 형태이지만 pickle은 파이썬에서만 사용가능 하되 지원되는 데이터 타입이 JSON 보다 많이 있습니다.

iris 데이터를 사용해 pickle 형태로 모델 저장

from sklearn.linear_model import LogisticRegression
from sklearn import datasets
import pickle
from sklearn.externals import joblib

데이터 로드

# Load the iris data
iris = datasets.load_iris()

# Create a matrix, X, of features and a vector, y.
X, y = iris.data, iris.target

logistic regression 적용

clf = LogisticRegression(random_state=0)
clf.fit(X, y)

모델 변수에 저장

saved_model = pickle.dumps(clf)
  • saved_model 을 실행해 보면 이상한 문자열이 나오는데 그것이 serializer 형태로 저장된 것이라고 볼 수 있습니다.

pickle로 저장한 모델 불러오기

# Load the pickled model
clf_from_pickle = pickle.loads(saved_model)

# Use the loaded pickled model to make predictions
clf_from_pickle.predict(X)
>> array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1,
       1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
       2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2,
       2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])

파일에 저장

joblib.dump(clf, 'filename.pkl')

>>

['filename.pkl',
 'filename.pkl_01.npy',
 'filename.pkl_02.npy',
 'filename.pkl_03.npy',
 'filename.pkl_04.npy']

저장된 파일을 불러와 predict 진행

clf_from_joblib = joblib.load('filename.pkl')
clf_from_joblib.predict(X)

>>> array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1,
       1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
       2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2,
       2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])

2023

우분투 가상환경 세팅

최대 1 분 소요

[우분투] 파이썬 가상환경 만들고 사용하기 - venv 사용하여 가상환경 생성

맨 위로 이동 ↑

2022

2023년 토이 프로젝트 주제

최대 1 분 소요

1. 영유아 행동인식을 통한 발달평가 XXX - https://aihub.or.kr/aihubdata/data/view.do?currMenu=115&topMenu=100&aihubDataSe=realm&dataSetSn=631

딥러닝과 텐서플로

1 분 소요

https://www.itworld.co.kr/insight/109825 [ITWorld - 머신러닝 라이브러리, 텐서플로우의 이해] https://tensorflow.blog/%EC%BC%80%EB%9D%BC%EC%8A%A4-%EB%94%A5%EB%9F%AC%EB%8B...

인경신경망

최대 1 분 소요

http://matrix.skku.ac.kr/math4ai-intro/W13/

[git] 삭제된 폴더, 파일 반영하기

최대 1 분 소요

분명히 로컬에서 삭제한 파일인데 원격에 반영되지 않는 경우가 있다. git status로 했을 때 삭제 됐다고 뜨는데 add를 해도 안먹고 commit을 해도 반영이 안되는 것이다…

맨 위로 이동 ↑